If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12y^2-13y-140=0
a = 12; b = -13; c = -140;
Δ = b2-4ac
Δ = -132-4·12·(-140)
Δ = 6889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6889}=83$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-83}{2*12}=\frac{-70}{24} =-2+11/12 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+83}{2*12}=\frac{96}{24} =4 $
| p+31=530 | | p=31=530 | | .0825=(1/2)^x | | 2/3x+19=29 | | 12(x-1)-12x=32 | | 10x=3(2x+8) | | -9÷6=3÷x | | 2-10x=12x | | 2=28/z-2 | | z+64=517 | | -18y=540 | | 747=f+231 | | 2z-2=6-3z-3 | | t+48=93 | | d-15=7 | | 18v^2−15v−18=0 | | 2xJ+3=11 | | 22=6.28r | | 3x2+14x+26=0 | | t+515=-440 | | 18v2−15v−18=0 | | -4(3c-10)+5c=2c+5 | | h-66=-6 | | 10w+8=22w=360 | | a^2-10a=-9 | | -2w-2=4+3w | | -16t^2+49.0237184t+6.3=0 | | 6a-14=4+2 | | w+242=634 | | 5x+10=3x(x+10) | | 2(-6)-y=5 | | k–2)=10(3k+9) |